ABSTRACT

Moursy, Mohamed El-Sayed Mohamed, Master of Science in Agricultural Engineering, Alexandria University, 2004. UTILIZATION OF SOLAR ENERGY FOR DRYING LEAVES OF MEDICINAL AND AROMATIC PLANTS

Egypt is one of the sun belt countries, having a great numbers of sunshine hours per year. The solar energy which generated from sun radiation is used for drying many agricultural crops especially medicinal and aromatic plants. These plants are cultivated in Egypt for both local consumption and export.

Peppermint and sweet basil are the most important medicinal and aromatic plants all over the world especially in Egypt.

The main objectives of this investigation were to:-

- Construct a appropriate solar drying system for drying the leaves and different parts of crops especially medicinal and aromatic plants.
- 2. Measure and investigate some of physical and chemical properties.
- 3. Evaluate the thermal performance of the solar air collector.
- Find out the optimum temperature and air flow rate for drying the leaves of peppermint and sweet basil.

The conventional sun drying method of peppermint leaves gave the worst average drying rate of 0.32 % db/min and 0.21 % db/min due to long drying period of 23 hr. and 33 hr., with average drying air temperature of 31.0 °C and 20.5 °C, total chlorophyll of 35.40 and 42.00 mg. per 100 gms sample, means volatile oil percentage of 1.27 % and 1.62 %, means volatile oil specific gravity were 0.917 and 0.919 means

xxi

volatile oil refractive index of 1.47 and 1.48, means volatile oil optical rotation of -19 and -20 and menthol content of volatile oil percentage of 32.38 % and 41.60 % in 2001 and 2002 seasons respectively.

While, the conventional sun drying method of sweet basil leaves gave the worst average drying rate of 0.25 % db/min and 0.12 % db/min due to long drying period of 27 hr. and 39 hr., with average drying air temperature of 30.1 °C and 21.9 °C, total chlorophyll of 16.8 and 17.8 mg. per 100 gms sample, means volatile oil percentage of 0.82 % and 0.86 %, means volatile oil specific gravity of 0.934 and 0.928 gm/cm³, means volatile oil refractive index of 1.477, means volatile oil optical rotation were -20 and -19 and linalool content of volatile oil percentage of 38.45 % and 42.10 % in 2001 and 2002 seasons respectively.

The solar air drying method of peppermint leaves gave the average drying rate ranged from 0.52 % to 0.62 % db/min and 0.32 % to 0.34 % db/min due to short drying period ranged from 12 to 14 hr. and 21 to 24 hr., with average drying air temperature ranged from 34.7 to 39.4 °C and 24.5 to 33.5 °C, total chlorophyll ranged from 40.1 to 46.0 mg. per 100 gms sample and 49.9 to 59.2 mg. per 100 gms sample, means volatile oil percentage ranged from 2.48 to 2.80 % and 2.68 to 2.87 %, means volatile oil specific gravity ranged from 0.919 to 0.921 and 0.918 gm/cm³, mean volatile oil refractive index of 1.47 and 1.48, means volatile oil optical rotation of -20 and -20 to -21 and menthol content of volatile oil percentage ranged from 39.62 to 40.06 % and 45.5 to 50.20 % in 2001 and 2002 seasons respectively.

While, solar air drying method of sweet basil leaves gave the average drying rate ranged from 0.37 % to 0.45 % db/min and 0.24 % to 0.26 % db/min due to long drying period ranged from 15 to 18 hr. and 26 to 28 hr., with average drying air temperature ranged from 34.4 to 38.0 °C and

24.9 to 28.5 °C, means total chlorophyll ranged from 19.3 to 22.5 mg. per 100 gms sample and 20.5 to 23.7 mg. per 100 gms sample, means volatile oil percentage ranged from 1.76 to 1.82 % and 1.91 to 2.03 %, means volatile oil specific gravity ranged from 0.943 to 0.936 and 0.930 gm/cm³, means volatile oil refractive index of 1.477 and 1.478, means volatile oil optical rotation of -20 and -18 to -20 and linalool content of volatile oil percentage ranged from 47.92 to 54.81 % and 48.4 to 55.4 % in 2001 and 2002 seasons respectively.

The daily average heat removal factor and parameters of solar collector increased when the air flow rate increased, although the effect is not as pronounced at higher air flow rates. The daily average heat removal factors, F_R with three levels of air flow rates (9.56, 6.64 and 4.06 m³/min) were 0.8123, 0.7684 and 0.7422 respectively. Means while the solar air collector parameters, F_RU_L were 6.2388, 5.4448 and 4.3151W/ (m². °C), respectively. The overall heat transfer coefficient of solar collector at air flow rates (9.56, 6.64 and 4.06 m³/min) were 7.9602, 7.0755 and 5.8038 W/ (m². °C), respectively.

1-

The maximum instantaneous thermal efficiency of solar air collector with three levels of air flow rates (9.56, 6.64 and 4.06 m^3 /min) were 64.14 %, 61.58 % and 59.31 % respectively.

Finally, applying the solar air drying method in drying of peppermint and sweet basil at air flow rates range of $(4.06 - 6.64 \text{ m}^3/\text{min})$ is recommended to utilize in commercial drying. The product has the best drying, physical and chemical characteristics.

xxiii

TABLE OF CONTENT

	Page
LIST OF TABLES	viii
LIST OF FIGURES	xi
NOMENCLATURE	xvi
ABSTRACT	xxi
I- INTRODUCTION	1
II- REVIEW OF LITERATURE	5
A-Solar Energy Fundamentals	5
1- Available solar energy	5
2- The extraterrestrial solar constant	7
3- Solar angles	9
4- Sunrise and sunset	12
5- Solar radiation model	13
6- Surface orientation	14
7- Solar collectors	16
7.1 Solar collector types	16
7.1.1 Solar concentration collectors	16
7.1.2 Flat plate solar air collectors	17

7.1.2.1 A flat plate solar air collector performance	17
7.1.2.1.1 The heat removal factor	20
7.1.2.1.2 Instantaneous thermal efficiency of an	
air type solar air collectors	21
7.1.2.1.3 The solar air collector parameters	22
B- Solar Drying Of Agricultural Products	24
C- Solar Drying Of Medicinal and Aromatic Plants	25
1- Conventional sun drying method	25
2- Passive solar-energy drying methods	26
3- Active solar energy drying methods	29
D- Theory of Drying Process	35
E- Classification of Medicinal and Aromatic Plants	38
F- Peppermint Medicinal and Aromatic Plants	39
G- Sweet Basil Medicinal and Aromatic Plants	41
H - Oil of Peppermint	44
I- Oil of Sweet Basil	45
III- MATERIALS AND METHODS	47
A - Experimental Diagram	47
B – Materials	47
1- Peppermint and sweet basil	47
2- The flat plate solar air collector	49

	3- The drying chamber	51
С	– Methods	51
	1- Experiments of the drying methods	51
	1.1 The conventional sun drying method	51
	1.2 The solar air drying method	55
D	– Instrumentation	55
	1- Temperature measurements	55
	2- Air flow rate measurements	58
	3- Moisture content measurements	58
	4- Relative humidity measurements	60
	5- Determination of total chlorophyll	60
	6- Determination of volatile oil percentage	60
	7- Specific gravity of volatile oil measurements	64
	8- Refractive index of volatile oil measurements	65
	9- Optical rotation of volatile oil measurements	66
	10- Determination of volatile oil content	
	(Menthol and Linalool)	67
	10.1 Gas chromatography analysis	67
	10.2 Preparation of the sample	71
	11- Statistical analysis	71
	12- Solar-meter	71

I	V- RESULTS AND DISCUSSION	72
3	A - The Drying Methods	72
	1- Conventional sun drying method	72
	1-1 Conventional sun drying method of peppermint leaves	72
	1-2 Conventional sun drying method of sweet basil leaves	79
	2- Solar air drying method	95
	2-1 Solar air drying method of peppermint leaves	95
	2-2 Solar air drying method of sweet basil leaves	99
E	3 - The Solar, Air Collector Thermal Performance	109
	1- Flat plate solar air collector thermal efficiency, (Ei) decimal	109
	2- Heat removal factor (FR) of air solar collector, decimal	112
	3- Solar collector parameters (UL FR and FR ($\tau\alpha$)), Decimal	116
(C – Effect of Drying Methods on Total Chlorophyll content	
	(mg per 100 gms. Fresh weight of leaves per plant	122
	1 - Peppermint leaves	122
	1.1 Effect of the conventional sun drying method	122
	1.2 Effect of the solar air drying method	122
	2 - Sweet basil leaves	124
	2.1 Effect of the conventional sun drying method	124
	2.2 Effect of the solar air drying method	124
]	D – Effect of Drying Methods on Oil Production	125

1 - Peppermint volatile oil	125
1.1 Effect of the conventional sun drying method	125
1.2 Effect of the solar air drying method	128
2 - Sweet basil volatile oil	129
2.1 Effect of the conventional sun drying method	129
2.2 Effect of the solar air drying method	1,29
E-Effect Of Drying Methods On Physical-chemical	
Properties oils	131
1 - Specific gravity	131
1.1 Peppermint volatile oil	131
1.1.1 Effect of the conventional sun drying method	131
1.1.2 Effect of the solar air drying method	131
1.2 Sweet basil volatile oil	133
1.2.1 Effect of the conventional sun drying method	133
1.2.2 Effect of the solar air drying method	135
2 – Refractive index	135
2.1 Peppermint volatile oil	135
2.1.1 Effect of the conventional sun drying method	135
2.1.2 Effect of the solar air drying method	137
2.2 Sweet basil volatile oil	138
2.2.1 Effect of the conventional sun drying method	138

2.2.2 Effect of the solar air drying method	138
3 – Optical rotation	140
3.1 Peppermint volatile oil	140
3.1.1 Effect of the conventional sun drying method	140
3.1.2 Effect of the solar air drying method	140
3.2 Sweet basil volatile oil	142
3.2.1 Effect of the conventional sun drying method	142
3.2.2 Effect of the solar air drying method	142
4 – Volatile oil components	144
4.1 Menthol	144
4.1.1 Effect of the conventional sun drying method on	
peppermint volatile oil	144
4.1.2 Effect of the solar air drying method on Peppermint	
volatile oil	146
4.2 Linalool	146
4.2.1 Effect of the conventional sun drying method	
on Sweet basil volatile oil	147
4.2.2 Effect of the solar air drying method	
on Sweet basil volatile oil	147
V- SUMMARY AND CONCLUSION	154
VI- LITERATURE CITED	163

				0
				Ó
957	 	IC SUMMARY .		
174		DICES	VII- APPEN	
				~

NOMENCLATURE

A	is the apparent solar radiation at air mass equals zero, W/m ²
A'	is the cross section area of air pipe, m ²
A _c	is the effective solar air collector surface area, m^2
A	is the constant dependent on the agricultural material
	dimensionless.
ADT	is the accumulated drying time, hour.
В	is the atmospheric extinction coefficient, dimensionless
С	is the sky diffuse radiation factor, dimensionless
С _р	is the air specific heat, kJ / (kg. °C)
C.S.D.M	is the conventional sun drying method.
DR	is the drying rate, % (db)/min.
e	is the represents angle of refraction decimal
E.E.D.C	is the Egyptian Exports Development Center
EMC (dw) is the equilibrium moisture content, % web basis
EMC (db)) is the equilibrium moisture content, % dry basis
EMCT	is the equilibrium moisture content time, hour
F _R	is the heat removal factor, dimensionless
F _{sg}	is the angle factor between the tilted surface and the ground,
	dimensionless
F _{ss}	is the angle factor between the tilted surface and the sky,
	dimensionless
н	is the hour angle, degree.
i	is the angle of incidence

xvi

I	is the hourly solar radiation incidence, W/m ²
I	is a diffuse sky radiation, W/m ²
I DN	is the direct normal solar radiation incidence, W/m ²
IMC (wb)	is the initial moisture content, % wet basis
IMC (db)	is the initial moisture content, % dry basis
Io	is the extraterrestrial solar radiation, W/m ²
Isc	is the solar constant W/m ²
I _{mi}	is the main day of direct solar radiation on a horizontal
	surface for i th month, W/m ²
Ir	solar radiation reflected from surrounding surfaces W/m ²
It	is the total solar radiation incidence on a collector surface w/m^2
I _t (av)	is the average hourly total solar radiation incidence, w/m^2
К	is the drying constant, 1/hr
L	is the latitude angle taken positive sign north of the equator
L.S.D _{0.05}	is the least significant difference
m	is the air mass flow rate, kg/sec.
MC	is the moisture content at time t, % dry basis
MR	is the moisture ratio, decimal
MC (wb)	is the moisture content wet basis %.
MC (db)	is the moisture content dry basis %
n	is the number of day of the year $1 \le n \le 365$
n	is the index of refraction of the fewer dens.
N'	is the index of refraction of the more dens medium
N	is the day length, hr
No	is the constant dependent on the agricultural material

xvii

	XVIII
O.D	is the optical density (read of spectrophotometer).
OR	is the optical rotation of volatile oil
PSD	is the plastic solar dryer
Q	is the air flow rate, m ³ /min
Q1	is the air flow rate, (9.56 m ³ /min)
Q2	is the air flow rate, (6.64 m ³ /min)
Q3	is the air flow rate, (4.06 m ³ /min)
Q_L	is the thermal energy losses, watt
QS	is the energy storage in the collector material, watt
QU	is the useful heat gain, Watt
RH	is the relative humidity of ambient air, %
RH (av)	is the average relative humidity of ambient air, %
RI	is the refractive index of volatile oil
SAD	is the solar air drying method
SAD1	is the solar air drying method at air flow rate equals 9.56 m ³ /min
SAD2	is the solar air drying method at air flow rate equals 6.64 m^3/min
SAD3	is the solar air drying method at air flow rate equals 4.06 m ³ /min
SG	is the specific gravity of volatile oil
S.T	is the solar time, hour
t	is the drying time, hr
TADT	is the total accumulated drying time, hour
Ta	is the ambient air temperature, °C
T _C	is the constant value
T (av)	is the average solar air temperatures, °C
Ta (av)	is the average ambient air temperature, °C

xviii

Ti	is the inlet solar collector air temperature, C		
T _i (av)	is the average inlet solar collector air temperature, °C		
To	is the outlet solar collector air temperature, °C		
T _o (av)	is the average outlet solar collector air temperature, °C		
T _{P, m}	is the absorber surface mean temperature, °C		
Trea.	is the treatments		
T. ch	is the total chlorophyll (mg.per 100 gms. Sample)		
UL	is the overall heat losses coefficient, $W/(m^2.^{\circ}C)$		
v	is the air flow rate, $m^3/(m. s)$		
\mathbf{V}^{\star}	is the constant volume of acetone (mg.)		
V'	is the air velocity, m/sec		
Vo	is the volume of the volatile oil, (cm ³)		
vo	is the volatile oil percentage, %		
Ŵ	is the weight of sample (gm.)		
wb	is the wet basis %		
Ww	is the water mass, gr.		
Wd	is the dry mass, gr.		
W _T	is the weight of sample gr. (25gr.)		
Xo	is the percentage of the volatile oil, %		
Z	is the zenith angle		
ß	is the solar altitude angle above the horizontal, degree.		
¢	is the solar azimuth angle, Deg		
δ	is the solar declination angle, Deg		

xix

- θ is the solar incidence angle, Deg
- ω is the sunset hour angle, Deg
- or is the sunrise hour angle, Deg
- ρ_{g} is the reflectance of the ground
- ρ_0 is the density of the volatile oil (gr. / cm³)
- Σ is the surface tilted angle, degree
- τα is the transmittance- absorptance product of cover and absorber surface, dimensionless
- n is the instantaneous thermal efficiency, decimal.
- n_{max} is the maximum possible instantaneous solar collector efficiency