Name of Candidate: Manal Abd El-Hakam Atia. Degree: Ph.D.

Title of Thesis: physiological studies on the nutrition of broad bean plant.

Supervisors: Prof. Dr. Yehia H. El-Shafey, Prof. Dr. Ahmed Hussien

Hanafy Ahmed, Dr. Abd El-Rahman Ghallab

Department: Agricultural Botany.

Branch: Plant Physiology.

Approval: 10/7/2003

ABSTRACT

Two pot experiments were carried out in two successive season 1999-2000 and 2000-2001 on faba bean (Giza 642) to study the effect of different levels of Zn, Fe, Mn and Cu either as soil addition at the rate (3, 6, 9 ppm) for Zn, Fe, Mn and (1.5, 3, 4.5 ppm) for Cu or for foliar application at the rate (50, 100, 150 ppm) for Zn, Fe, Mn and Cu on growth characters, yield and its component as well as to determine the critical range of Zn, Fe, Mn and Cu concentration on different plant organs. The lowest and the middle level of micronutrients soil addition or foliar application increased most of growth characters and yield component. In addition, lower stems were chosen as the best indicator of Zn, Fe, Mn and Cu status in broad bean plant.

A H. Harofy Ahmed

Y. H. Gl-Shoff

نموذج رقم (٤)

أسم الطالبة: منال عبد الحكم عطية.
عنوان الرسالة: دراسات فسيولوجية على تغنية نبات القول البلدى.
المشرفون: أ.د./ يحيى حسن الشافعى، أ. د/ أحمد حسين حنفي أحمد، د./
عبد الرحمن مرسى غلاب، أ.د./ نادية عمر منجد
قسم: النبات الزراعي. فرع: فسيولوجيا النبات.
تاريخ منح الدرجة: ١٠٠٣/٧/١

الملخص العربي

تم اجراء تجربتا اصص في موسمين متتالين هما ١٩٩٩-۲۰۰۰ و ۲۰۰۰-۲۰۰۱ على نبات الفول البلدي (جيــزة ٦٤٢) وذلك لدراسة تأثير المستويات المختلفة من الزنك، الحديد، المنجنيز و النحاس اما مضافة للتربة بمعدلات (٣، ٦ و ٩ جــزء في المليون) لكل من من الزنك، الحديد و المنجنيز بينما بمعدلات (١,٥) ٣ و جزء في المليون ٤,٥) في حالة النحاس او مضافة بالرش الورقى بمعدلات (٥٠، ١٠٠ و ١٥٠ جزء في المليون) لكل من الزنك، الحديد، المنجنيز و النحاس. هذا و قد تـم دراسـة صفات النمو و المحصول و مكوناته بالإضافة الى تحديد المدى الحرج للتركيزات المختلفة من الزنك، الحديد، المتجنيز و النحاس و تأثيرها على الاعضاء النباتية المختلفة. و قد اظهرت النتائج ان المستويات المنخفضة و المتوسطة من المغنيات الصغري سواء بالاضافة الارضية او بالرش الورقى زادت من صفات النمو و المحصول و مكوناته. بالاضلفة الى ذلك تم التوصل الى ان الساق السفلي هو انسب الاجزاء النباتية كمؤشر لحالة الزنك، الحديد، المنجنيز و النحاس في نبات الفول البلدي.

-ev

(vi) s,

Content of Review

	Page
I- Effect of zinc	3
1- Effect of zinc soil addition	3
1-1- Growth characters	3
1-2- Yield and its components	5
1-3- Physiological characters	6
1-4- Chemical composition	7
1-4-1- Critical deficiency concentration of zinc (CDC)	9
1-4-2- Critical toxicity concentration of zinc (CTC)	11
2- Effect of zinc foliar application	14
2-1- Growth character	14
2-2- Yield and its components	15
2-3- Physiological characters	15
2-4- Chemical composition	16
II- Effect of iron	16
1- Effect of iron soil addition	16
1-1- Growth characters	16
1-2- Yield and its components	17
1-3- Chemical composition	18
2- Effect of iron foliar application	19
2-1- Growth character	19
2-2- Yield and its components	21
2-3- Chemical composition	22
2-3-1- Critical deficiency concentration of zinc (CDC)	22
2-3-2- Critical toxicity concentration of zinc (CTC)	23
2-4- Physiological characters	23

III- Effect of manganese	26
1- Effect of manganese soil addition	26
1-1- Growth characters	26
1-2- Yield and its components	26
1-3- Physiological characters	27
1-4- Chemical composition	27
1-4-1- Critical deficiency concentration of manganese (CDC)	28
1-4-2- Critical toxicity concentration of manganese (CTC)	29
2- Effect of manganese foliar application	30
2-1- Growth character	30
2-2- Yield and its components	30
2-3- Chemical composition	31
IV- Effect of copper	32
1- Effect of copper soil addition	32
1-1- Growth characters	32
1-2- Yield and its components	33
1-3- Chemical composition	33
1-3-1- Critical deficiency concentration of copper (CDC)	34
1-3-2- Critical toxicity concentration of copper (CTC)	35
1-4- Physiological characters	36
2- Effect of copper foliar application	38
2-1- Growth character	38
2-2- Chemical composition	39
- Factors affecting critical nutrient concentration in plant	39

Contents

	Page
- Introduction	1
- Review of literature	3
- Materials and methods	49
- Results and discussion	55
1- Growth parameters	55
1-1- Effect of zinc	55
1-2- Effect of iron	64
1-3- Effect of manganese	76
1-4- Effect of copper	87
2- Yield and its components	95
3- Critical nutrient range (CNR)	112
3-1- Critical nutrient range of zinc	126
3-2- Critical nutrient range of iron	130
3-3- Critical nutrient range of manganese	131
3-4- Critical nutrient range of copper	135
- Summary.	202
- References.	207
- Arabic summary.	