ABSTRACT

The experimental work of the present study was carried out at the Poultry Research Station, Seds, Beni Swiff, Animal Production Research Institute, Agriculture Research Center, Ministry of Agriculture, Dokki, Egypt, during the period from January to May, 2001 to study the effect of partially and completely replacing of soybean meal (SBM) protein with Nigella Sativa meal (NSM) protein on laying performance, some carcass parameters, economical efficiency as well as nutrient digestibilities of the experimental diets. Birds of 4 local strains of 28 week of old fed on layer corn- soya diets in which SBM was replaced by NSM protein at levels of 0, 25, 50, 75 and 100 %.

A total number of 360 hens and 40 cocks from Bandarah (BA), Gimmizah (GM), Dandarawi (DA) and Dokki-4 (DK-4) (90 hens plus 10 cocks each) strains of 28 week of old were used in this experiment. The experimental birds were divided into 5 equal groups (18 hens + 2 cocks each). Five experimental corn-soybean meal layer diets were formulated from a layer basal diet by partially and completely replacing SBM protein with NSM protein at replacement ratios of 0 (control), 25, 50, 75 and 100 %.

From the economical point of view, under the present experimental conditions, it is advisable to use NSM protein at levels of 25, 50, 75 and 100 % to replace of SBM protein in GM, BA, DK-4 and DA hen diets.

Key words: (Nigella Sativa Meal, Local layer breeds, Performance, Slaughter, Economic and Digestibility).

الخلاصة.

أجرى هذا البحث بمحطة بحوث سدس ببنى سويف التابعة لمعهد بحوث الإنتاج الحيوانى بالدقى خلال الفترة من ا يناير إلى ٢٠ مايو ٢٠٠١ م لدراسة تأثير استبدال بروتين كسب فول الصويا ببروتين كسب حبة البركة بمستويات صفر ، ٢٥ ، ٥٠ ، ٥٠ ، ١٠٠ على مظاهر الأداء ، صفات البيض ، بعض صفات الذبيحة ، الكفاءة الاقتصادية وكذا معاملات هضم المركبات الغذائية للعلائق المختبرة.

تم تكوين ٥ علائق بياض تجريبية وذلك بتكوين عليقة بياض تحتوى ١٦٪ بروتين خام ٢٥٠ كيلو كالورى طاقة ممثلة / كجم عليقة مع استبدال بروتين كسب فول الصويا بها ببروتين كسب حبة البركة بمستويات ٢٥،٠٠٠ / ١٠٠٠ / ١٠٠٠ /

تم استخدم عدد ٣٦٠ دجاجة بياضة و ٤٠ ديك (٩٠ دجاجة + ١٠ ديوك لكل سلالة) عمر ٢٨ أسبوع بمتوسط وزن ٢١، ١٦٢٥, ١٦٢١, ٢٥، ١١٤٧, ١١٤٧, ١١٤٧, ١١٤٧ على سلالات البندرة والجميزة والدندراوى و دقى ٤ على الترتيب حيث وزعت عشوائيا على معاملات غذائية متساوية وغذيت كل مجموعة على عليقة من ٥ علائق بياض تجريبية السابق الإشارة إليها وذلك في الفترة من ٢٨ إلى ٤٨ أسبوع

من وجهة النظر الغذائية والفسيولوجية يمكن القول بأن استبدال بروتين كسب حبة البركة حتى ١٠٠ ٪ من بروتين كسب فول الصويا في علائق الدجاج البياض- تحت ظروف التجربة الحالية لم يكن له تأثير ضار على مظاهر الأداء للدجاج وحيث أن إنتاج الدواجن يعتمد بصفة أساسية على العائد الاقتصادي فإن تغذية دجاج الجميزة والبندرة ودقى - ٤ والدندراوي على أعلاف محتوية على بروتين كسب حبة البركة بنسبة ٢٥ ، ٥٠ ، ٧٥ ، ١٠٠ ٪ كبديل لبروتين كسب فول الصويا في الفترة من ٢٩ إلى ٤٨ أسبوع من العمر أعطت أفضل كفاءة أقتصادية.

الكلمات الدالة: (كسب حبة البركة - الدجاج البياض المحلى- صفات - الذبـــح - اقتصــاد - الهضم).

CONTENTS

		Page
	CHAPTER I	1
1-	INTRODUCTION	1
2-	REVIEW OF LITERATURE	3
2.1.	Identification of Nigella Sativa L	3
2.2.	Advantages of Nigella Sativa L	3
2.3.	The importance of Nigella Sativa L. in medicinal purpose	4
2.4.	Chemical composition of Nigella Sativa L	5
2.5.	Effect of Nigella Sativa on poultry performance	7
2.5.1.	Growth performance	7
2.5.2.	Laying performance	10
2.6.	Effect of Nigella Sativa on carcass characteristics	11
2.7.	Effect of Nigella Sativa on nutrient digestibilities	13
2.8.	Effect of Nigella Sativa on economical efficiency	14
ı	CHAPTER II	15
	MATERIALS AND METHODS	15
1.	FEEDING TRIAL	15
1.1.	Preparation of Nigella Sativa meal	15
1.2.	Notes about developed breeds used in the study	16
1.3.	Experimental birds	17

1.4.	Experimental diets	19
1.5.	Experimental treatments	19
1.6.	Management	19
1.7.	Vaccination	19
1.8.	Measurements and methods of interpreting results	20
1.8.1.	Body weight (BW)	20
1.8.2.	Body weight change (BWC)	20
1.8.3.	Egg number (EN)	20
1.8.4.	Egg weight (EW)	20
1.8.5.	Egg mass (EM)	21
1.8.6.	Feed intake (FI)	21
1.8.7.	Feed conversion (FC)	22
1.8.8.	Crude protein conversion (CPC)	22
1.8.9.	Caloric conversion ratio (CCR)	22
1.8.10.	Mortality rate (MR)	23
1.9.	Economical efficiency (EE _F)	23
1.10.	Egg characteristics	24
1.10.1.	Egg shape index (ESI)	24
1.10.2.	Albumin weight (AW) %	24
1.10.3.	Yolk weight (YW) %	25
1.10.4.	Shell weight (SW) %	24
1.10.5.	Shell thickness (ST)	25
1.10.6.	Thick albumin and yolk height (AH&YH)	25
1.10.7.	Yolk diameter (YD)	25
1.10.8.	Yolk index (YI) %	25

1.10.9.	Yolk color (YC)	25
1.11.	Egg fertility and hatchability	25
1.12.	Slaughter test	26
2.	DIGESTION TRIAL	26
3.	Analytical methods	27
3.1.	Proximate analysis	27
3.2.	Statistical analysis	28
	CHAPTER III	29
	RESULTS AND DISCUSSION	29
1.	FEEDING TRIAL	29
1.1.	Chemical composition and amino acid content of NSM	29
1.2.	Effect of substituting SBM by NSM on laying performance.	31
1.2.1.	Body weight (BW)	31
1.2.2.	Body weight change (BWC)	34
1.2.3.	Egg number (EN)	37
1.2.4.	Egg weight (EW)	42
1.2.5.	Egg mass (EM)	47
1.2.6.	Feed intake (FI)	52
1.2.7.	Feed conversion (FC)	58
1.2.8.	Crude protein conversion (CPC)	63
1.2.9.	Caloric conversion ratio (CCR)	68
1.2.10.	Mortality rate (MR)	74
1.3.	Effect of Nigella Sativa on economical efficiency of laying	
	performance	76

1.4.	Effect of Nigella Sativa on egg characteristics	78
1.4.1.	Egg shape index (ESI) %	79
1.4.2.	Egg component weights	81
1.4.2.1.	Egg albumin weight (AW) %	81
1.4.2.2.	Egg yolk weight (YW) %	83
1.4.2.3.	Egg shell weight (SW) %	86
1.4.3.	Egg shell thickness (ST)	88
1.4.4.	Egg albumin height (AH)	90
1.4.5.	Egg yolk height (YH)	92
1.4.6.	Egg yolk diameter (YD)	95
1.4.7.	Egg yolk index (YI) %	97
1.4.8.	Egg yolk color	99
1.5.	Effect of substituting SBM by NSM on egg fertility	102
1.6.	Effect of substituting SBM by NSM on egg hatchability	105
1.7.	Effect of substituting SBM by NSM on slaughter	
	parameters	108
2.	DIGESTION TRIAL	111
	SUMMARY AND CONCLUSIONS	116
	REFERENCES	130
	APPENDIX	
	ARABIC SUMMARY	

LIST OF ABBREVIATIONS

A	Appendix
Abd.	Abdominal
AH	Thick albumin height
Alb.	Albumin
BA	Bandarah
BW	Body weight
BWC	Body weight change
AW	Albumin weight
CCR	Caloric conversion ratio
CF	Crude fiber
Cho.	Cholesterol
СР	Crude protein
CPC	Crude protein conversion
DA	Dandarawi
DK	Dokki-4
DM	Dry matter
EE	Ether extract
EE_f	Economical efficiency
EM	Egg mass
EN	Egg number
ESI	Egg shape index
EW	Egg weight
FC	Feed conversion
FI	Feed intake
GM	Gimmizah

GPT	Glotamic pyruvic transaminase
GR	Growth rate
I.U.	International unit
Kcal	Kilo calorie
mg	Milligram
Kg	Kilogram
ME	Metabolizable energy
Min.	Mineral
Mix.	Mixture
MR	Mortality rate
NFE	Nitrogen free extract
NSM	Nigella sativa meal
OM	Organic matter
PT	Piaster
SBM	Soybean meal
ST	Shell thickness
SW	Shell weight
Vit.	Vitamin
Vs	Versus
YC	Yolk color
YD	Yolk diameter
YH	Yolk height
YI	Yolk index
YW	Yolk weight