Abstract

ABSTRACT

Extracting of olive oil from olive fruits is considered one of the very difficult operation and costly for multiplying the processing steps (crushing, mixing, separating the solid-liquid phases either using hydraulic press or centrifugation, and later separating the oil from liquid phase). So, the traditional methods used for extracting olive oil especially that using a stone mill for crushing the olive fruit tend to increase the total losses and oil deterioration which increasing oil oxidation and rancidity. However, in order to promote both farmers and investor to grow and improve olive production especially in the new reclaimed land, a suitable method for olive handling and processing should be introduced.

The present study was carried out to design and evaluate olive oil extraction machine capable to accomplish extracting operation in the proper time with the suitable capacity and maximum separation of oil from olive past. The prototype machine for extracting olive oil executed the three major operations of crushing, mixing, and extracting and it was designed according to the hale engineering parameters that correspond to the physical and mechanical properties of the most spreading varieties in Egypt. The designed machine was developed and fabricated at the workshop of Agric. Eng. Res. Institute (AEnRI) and it was tested and evaluated at the laboratory of Agric. Eng. Dept., Mansoura University.

The obtained results through-out several stages of laboratory experimental showed that , for the crushing and mixing units, the optimum operation conditions for hummer mill were 3000 rpm (35.51 m/sec) for the rotating speed, 4 mm for screen hole diameter, 2 mm for clearance between hummers and miller case, and 4 hummer for the number hummers. Meanwhile, the optimum operation conditions for the extracting unit were from 60-70 kg/cm² for the pressure over the olive paste, 1.75 cm for the thickness of paste on mat tray, and 40 minutes for the time of constant pressure on the paste.

In general the developed oil extracting machine showed a good working ability and high operational performance and it can be recommended for both farmers and investors with olive holding areas less than 10 feddans.

No.	Title	Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	4
2.1.	Olive Trees.	4
2.1.1.	History of olive trees	6
2.1.2.	The Situation of olive trees worldwide and Locally.	7
2.1.2.1.	Spreading of the olive trees worldwide.	7
2.1.2.2.	Spreading of the olive trees in Egypt.	8
2.1.3.	Olive varieties.	10
2.1.4.	Olive fruits	11
2.2.	Physical and Engineering Properties.	12
2.2.1.	Physical properties.	12
2.2.1.1.	Size and shape.	12
2.2.1.2.	Weight and density.	13
2.2.1.3.	Sphericity.	14
2.2.2.	Engineering properties.	15
2.2.2.1.	Firmness and hardness.	15
2.2.2.2.	Repose angle.	16
2.2.2.3.	Coefficient of friction.	17
2.2.2.4.	Impact force.	17
2.3.	Olive Oil	19
2.3.1.	Olive oil production and consumption worldwide	19
2.3.2.	Chemical composition of olive oil.	23
2.3.3.	Olive oil and human healthy.	24
2.3.4.	Quality of olive oil.	25
2.3.4.1.	Definition of olive oil classes	26
2.3.5.	Important factors affecting olive oil quality.	27
2.3.5.1.	Timing of the olive harvesting.	27
2.3.5.2.	Method of harvesting.	27
2.3.5.3.	Storing of olive fruits.	28
2.4.	Processing Steps For Olive Oil Extraction.	29
2.4.1.	Olive leaf removal and washing.	29
2.4.2.	Crushing of olive fruits.	30
2.4.3.	Mixing of the olive paste.	31
2.4.4.	Separation of the solid and liquid phases.	33

I

No.	Title	Page
2.5.	Systems of Size Reduction (Crushing Systems).	35
2.5.1.	Nature of forces used in size reduction.	35
2.5.2.	Size reduction equipment.	36
2.5.2.1.	Stone mill.	39
2.5.2.2.	Metal toothed grinder.	39
2.5.2.3.	Hammer mill.	41
2.6.	Olive Oil Extraction Systems.	43
2.6.1.	Pressure process.	44
2.6.2.	Centrifugal methods.	49
2.6.2.1.	Centrifugal with three phases or outlet.	52
2.6.2.2.	Centrifugal with two phases or outlet.	55
2.6.3.	Combination method.	56
2.6.3.1.	Percolation.	57
2.7.	Olive oil storage.	60
3.	MATERIAL AND METHODS	61
3.1.	Materials:	61
3.2.	Equipment:	63
3.2.1.	Crushing and mixing unit	63
3.2.1.1.	Frame	63
3.2.1.2.	Feeding Box	68
3.2.1.3.	Metal hummer mill (Crusher)	75
3.2.1.4.	Olive paste Mixer	82
3.2.1.5.	Source of power (Kerosene Engine)	85
3.2.1.6.	Power transmission systems	85
3.2.2.	Hydraulic press	88
3.2.2.1.	Frame	88
3.2.2.2.	Hydraulic cycle	89
3.2.2.3.	Solid-Liquid separating tray	97
3.3.	Measuring Instruments	101
3.3.1.	Digital vernier caliper	101
3.3.2.	Digital balance	101
3.3.3.	Graduated nessler cylindrical with pipette	101
3.3.4.	Stop watch	102
3.3.5.	Density and angle of repose meter	102

Π

LIST OF CONTENTS

No.	Title	Page
3.3.6.	Digital instrument for measuring coefficient of friction	103
3.3.7.	Digital Hardness and shear force Gauge	103
3.3.8.	Computer Programs for measuring pit cross section area	106
3.3.9.	Tachometer (Speedometer)	106
3.3.10.	Digital Thermometer	107
3.3.11.	Drying oven	109
3.3.12.	Sieves	109
3.3.13.	Soxhlet	109
3.4.	Methods:	111
3.4.1.	Physical and mechanical properties of olive fruits	111
3.4.1.1.	Physical properties	111
3.4.1.1.1.	Size and Shape index	111
3.4.1.1.2.	Weight and Volume	112
3.4.1.1.3.	Densities and porosity	112
3.4.1.1.4.	Flesh/ fruit %, and flesh/pit ratio	114
3.4.1.1.5.	Cross-section area of olive pit	114
3.4.1.1.6.	Moisture content	114
3.4.1.2.	Mechanical properties:	116
3.4.1.2.1.	Fruit repose angle	116
3.4.1.2.2.	Fruit coefficient of friction	116
3.4.1.2.3.	Hardness	117
3.4.1.2.4.	Pit shears force	117
3.4.1.2.5.	Shear stress	117
3.4.2.	Designing calculation of extracting machine:	117
3.4.2.1.	Designing calculation of hummer mill (Crusher):	117
3.4.2.1.1.	Calculation of the feeding auger:	117
3.4.2.1.2.	Calculation of hummer mill design	118
3.4.2.1.3.	Calculation of mixer capacity	120
3.4.2.2.	Designing calculation of the hydraulic press	120
3.4.2.2.1.	Calculation of the needed force during process	121
3.4.3.	Testing the performance of the designed machine:	124
3.4.3.1.	Processing variables:	124
3.4.3.2.	Procedure of testing	128

Ш

No.	Title	Page
4.	RESULTS AND DISCUSSION	131
4.1.	Physical properties of the investigated fruits and its pit:	131
4.1.1.	Fruit size and shape index (Sphericity)	132
4.1.2.	Weight of fruits and their pits	141
4.1.3.	Number of fruits per kilogram	145
4.1.4.	Fruit volume (measured and calculated)	145
4.1.5.	Real, bulk density and porosity of olive fruits	147
4.1.6.	Flesh / fruit percentage and flesh / pit ratio	157
4.1.7.	Pit cross section area	158
4.2.	Mechanical properties	163
4.2.1.	Repose angle	163
4.2.2.	Fruit coefficient of friction	164
4.2.3.	Fruit hardness	168
4.2.4.	Pit shear force	168
4.2.5.	Pit shear stress	169
4.3.	Performance evaluation of crushing unit	172
4.3.1.	Effect of hummer mill peripheral speed	172
4.3.1.1.	Particles size Class I (PS.I < 2 mm)	172
4.3.1.2.	Particles size Class II (2 mm < PS.I < 4 mm)	173
4.3.1.3.	Particles size Class III (PS.III > 4 mm)	173
4.3.1.4.	Machine (crusher) efficiency:	174
4.3.1.5.	Machine (crusher) capacity:	176
4.3.2.	Effect of screen hole diameters:	177
4.3.2.1.	At 2 mm clearance and 2 hummers:	178
4.3.2.2.	At 4 mm clearance and 2 hummers:	179
4.3.2.3.	At 6 mm clearance and 2 hummers:	180
4.3.2.4.	At 2 mm clearance and 4 hummers:	189
4.3.2.5.	At 4 mm clearance and 4 hummers:	190
4.3.2.6.	At 6 mm clearance and 4 hummers:	191
4.3.2.7.	At 2 mm clearance and 6 hummers:	199
4.3.2.8.	At 4 mm clearance and 6 hummers:	200
4.3.2.9.	At 6 mm clearance and 6 hummers:	201
4.3.3.	Effect of number of hummers:	212
4.3.3.1.	At 3mm screen hole diameter and 2 mm clearance:	212
4.3.3.2.	At 4mm screen hole diameter and 2 mm clearance:	213
4.3.3.3.	At 5mm screen hole diameter and 2 mm clearance:	214

IV

LIST OF CONTENTS

No.	Title	Page
4.3.3.4.	At 3mm screen hole diameter and 4 mm clearance:	222
4.3.3.5.	At 4mm screen hole diameter and 4 mm clearance:	223
4.3.3.6.	At 5mm screen hole diameter and 4 mm clearance:	224
4.3.3.7.	At 3mm screen hole diameter and 6 mm clearance:	232
4.3.3.8.	At 4mm screen hole diameter and 6 mm clearance:	233
4.3.3.9.	At 5mm screen hole diameter and 6 mm clearance:	234
4.3.4.	Effect of clearances:	242
4.3.4.1.	At 3mm screen hole diameter and 2 hummers:	242
4.3.4.2.	At 4mm screen hole diameter and 2 hummers:	243
4.3.4.3.	At 5mm screen hole diameter and 2 hummers:	244
4.3.4.4.	At 3mm screen hole diameter and 4 hummers:	252
4.3.4.5.	At 4mm screen hole diameter and 4 hummers:	253
4.3.4.6.	At 5mm screen hole diameter and 4 hummers:	254
4.3.4.7.	At 3mm screen hole diameter and 6 hummers:	262
4.3.4.8.	At 4mm screen hole diameter and 6 hummers:	262
4.3.4.9.	At 5mm screen hole diameter and 6 hummers:	264
4.3.5.	Correlation between the evaluating parameters and the	
	affecting parameters on hummer mill:	272
4.4.	The performance characteristics of the designed press:	274
4.4.1.	Effect of (paste thickness on mat tray) on the evaluating parameters:	274
4.4.1.1.	Remaining oil in cake after extracting:	274
4.4.1.2.	Extracting efficiency:	276
4.4.1.3.	Capacity of the press:	278
4.4.2.	Effect of (constant pressure times) on the evaluating parameters:	283
4.4.2.1.	Remaining oil in cake after extracting:	283
4.4.2.2.	Extracting efficiency:	285
4.4.2.3.	Capacity of the press:	286
4.4.2	Correlation between the evaluating parameters and the	292
4.4.3.	affecting parameters on press:	
5.	SUMMARY AND CONCLUSION	293
6.	REFERANCES	301
7.	APPENDIX	312
8.	ARABIC SUMMARY	

v