Tarek Mohamed Yhaya Omar

Central. Lab. for Food and Feed, Agriculture Research Center

Evaluating the Reuse of Sewage in Egypt: Environmental Disciplines, Pollutants and Treatment

ABSTRACT

The aim of the present investigation is to evaluate the reuse of sewage in Egypt from the point of environmental discipline, pollution and treatment. The work given in this thesis deals with two essential parts, the first part includes the reuse of sewage water for irrigation the sandy soil present at El-Gabal El-Asfar, Abu-Rawash and Alexandria.

The second part includes the treatment processes of wastewater and treated sewage water by using different materials to remove heavy metals.

Many soil profiles were taken to represent soils irrigated for different periods (5, 7, 12, 23, 25, 40, and 45 years) besides one profile irrigated with canal water and other profile from the virgin soil were found in the same area for both El-Gabal El-Asfar and Abu-Rawash. Water samples were collected from sewage drain and from canal water. Samples from vegetable crop of cabbage plant, woody trees (E. camaldulensis and C. glauca) and also some citrus trees (Naring, Orange and Lemon) grown in the different soils were analyzed for their content of heavy trace metals. Also, treated materials were collected for treating both treated sewage water and synthetic solution to remove heavy metals as (Pb, Cd, Ni, Co, Cr, Zn, Cl⁻, NO₃⁻ and SO₄²⁻⁻)

The obtained results showed that:

A very slight variation in texture was observed upon irrigating soil with sewage water especially soils irrigated for 40 and 45 years, as soil texture was loamy sand in the canal water irrigated and the virgin soils and sand clay loam in soils irrigated for 40 and 45 years with sewage water

Organic matter content is generally higher in soils irrigated with sewage water than those irrigated with canal water or virgin soils and tended to accumulate in the surface layers.

Irrigating soils with sewage water decreased $CaCO_3$ content and pH of the surface layers, generally there was an increase in EC values of the soils irrigated with sewage water than those of the irrigated canal or virgin soils.

In respect to DTPT and/or HNO₃-extractable, heavy metals (Fe, Cu, Mn. Zn, Pb, Cd, Ni, Co and Cr) in both soil cultivation with (Citrus and Woody) trees and soil cultivation with cabbage plant which irrigated with sewage water at different periods under investigation, increased as the irrigation periods increased. The region of cultivated with (Citrus and Woody) trees maintained higher heavy metals concentrations than the region of soil cultivated with cabbage plants.

Data indicate that the bioavilability of trace elements to plant can be varying according to plant species. Plant heavy metals were concentrated mainly in the edible parts of cabbage plants and citrus trees. However, their accumulation in cabbage leaves are higher than citrus trees leaves. E. camaldulensis and C. glauca were capable of taking heavy trace metals, so, they can be used as filters for the purification of sewage water and reduced of the spread of these pollutants in the soil.

Evaluating the treatment process of sewage water and waste water by using different treatment materials as Amberlite, CM-cellulose, Cellulose phosphate, Dowex, DEAE-cellulose and water hyacinth at different heavy metals cations and anions were recorded under the study of three factors: time of shaking, pH of solution and the concentration of metal ions. Generally, uptake of metal ions increased by increasing the contact time, also, increases concentration increased the uptake percent metal ion except at high concentration remained constant according to Langmuir model while water hyacinth uptake percent of metal ions decrease by increasing the concentration. On the other hand, decreased pH increasing the uptake percent of Amberlite, CM-cellulose, Phosphate cellulose, Dowex and DEAE-cellulose. And the *vice versa*, uptake percent of water hyacinth increased by increasing pH values

Removal of some cations and anions from treated sewage water increased by increasing weight of different treatment materials.

CONTENTS

List of Tables	
List of Figures	
ABSTRACT	1
Aim of the work	4
CHAPTER I	
INTRODUCTIO AND LITERATURE	
I. 1. INTRODUCTION	
I. I. INTRODUCTION	6
I. 2. Sources of heavy metals	
I.2.1. Agricultural materials.	8
I.2.2. Manufacture and disposal include	
I.2.3. Waste disposal	9
I.3. Toxicity of some metal cations and anions	9
I.3.1.Lead toxicity:	
I.3.2.Zinc toxicity:	
I.3.3.Cadmium toxicity:	10
I.3.4. Chromium toxicity:	11
I.3.5. Cobalt toxicity:	
I.3.6.Nickel toxicity: -	12
I.3.7. Chloride toxicity: -	12
I.3.8. Sulphates toxicity: -	13
I.4. Ion exchange materials for waste water treatment	15
I.4.1 Natural exchange materials:	14
I.4.1.1. Clay minerals: I.4.1.2. Wood:	15
I.4.2. Synthetic ion exchange materials	15
I.4.2.1. DEAE-cellulose	
I.4.2.2.: CM-cellulose	16
I.4.2.3. P- cellulose	
I.4.2.4. Resins	
I.2. LITEATURE SURVEY	17
I.2.1. Heavy metals and water:	
I.2.1.1. Heavy metals in fresh water:	18
I.2.1.2. Heavy metals in sewage water:	23
1.5.1.3. Removal of toxic elements using ion exchange	25
materials:	

1.5.2.2 Effect of sewage water on some chemical properties of soil: 36 1.2.2.3. Effect of sewage water on the accumulation of heavy metals by soil: 38 1.5.3. Sewage Water and plants: 42 1.5.3.1.Accumulation of heavy metals in plants: 42 1.5.3.2.Effect of sewage water on the accumulation of heavy metals by plant:- 46 1.5.3.3. The translocation of metals through the different parts of plants: 50 1.5.3.4. Sewage risk reduction plantation of woody trees 53 CHAPTER II EXPERIMENTAL 59 I.1.1. Materials and Methods 59 I.1.2. Soil Samples: 60 I.1.3. Plant sampling and analysis 63 I.2.1. Synthetic solution 61 I.2.2. Treated sewage water 65 I.3. Treatment technique 66	I.5.2. Literature Survey on Soil: I.5.2.1. Effect of sewage water on some physical properties of the soil.	34
1.2.2.3. Effect of sewage water on the accumulation of heavy metals by soil: 38 1.5.3. Sewage Water and plants: 42 1.5.3.1.Accumulation of heavy metals in plants: 42 1.5.3.2.Effect of sewage water on the accumulation of heavy metals by plant:- 46 1.2.3.3. The translocation of metals through the different parts of plants: 50 1.5.3.4. Sewage risk reduction plantation of woody trees 53 CHAPTER II EXPERIMENTAL 53 I.1. Materials and Methods 59 II.1.2. Soil Samples: 60 II.1.2. O.5 M nitric acid extraction 62 II.1.3. Plant sampling and analysis 63 II.2.1. Synthetic solution 64 II.2.1. Synthetic solution 65 II.2.1. Synthetic solution 65 II.2.1. Treated sewage water 65		36
1.5.3.1.Accumulation of heavy metals in plants: 42 1.5.3.2.Effect of sewage water on the accumulation of heavy metals by plant:- 46 1.2.3.3. The translocation of metals through the different parts of plants: 50 1.5.3.4. Sewage risk reduction plantation of woody trees 53 CHAPTER II EXPERIMENTAL I.1. Materials and Methods 59 II.1. Water Samples: 60 II.1.2. Soil Samples: 60 II.1.3. Plant sampling and analysis 63 II.2.1. Synthetic solution 61 II.2.1. Synthetic solution 65 II.2.1. Treatment technique 66	I.2.2.3. Effect of sewage water on the accumulation of heavy	38
I.S.3.2.Effect of sewage water on the accumulation of heavy metals by plant:- 50 I.2.3.3. The translocation of metals through the different parts of plants: 50 I.5.3.4. Sewage risk reduction plantation of woody trees 53 CHAPTER II 53 CHAPTER II 59 II.1. Materials and Methods 59 II.1.2. Soil Samples: 60 II.1.2.1. DTPA soil test: 60 II.1.3. Plant sampling and analysis 63 II.2.Materials: - 64 II.2.1. Synthetic solution 65 II.2.1. Treatment tcchnique 66		42
I.2.5.3.4. Sewage risk reduction plantation of woody trees 53 CHAPTER II EXPERIMENTAL II.1. Materials and Methods 59 II.1.2. Soil Samples: 60 II.1.2.1. DTPA soil test: 61 II.1.2.2. 0.5 M nitric acid extraction 62 II.1.3. Plant sampling and analysis 63 II.2.1. Synthetic solution 64 II.2.2. Treated sewage water 65 II.3. Treatment technique 66		46
Instantion of woody needs CHAPTER II EXPERIMENTAL II.1. Materials and Methods 59 II.1.1. Water Samples: 60 II.1.2. Soil Samples: 60 II.1.2.1. DTPA soil test: 62 II.1.2.2. 0.5 M nitric acid extraction 63 II.1.3. Plant sampling and analysis 63 II.2.1. Synthetic solution 64 II.2.2. Treated sewage water 65 II.3. Treatment technique 66	-	50
II. 1.1. Water Samples:59II.1.2. Soil Samples:60II.1.2.1. DTPA soil test:62II.1.2.2. 0.5 M nitric acid extraction62II.1.3. Plant sampling and analysis63II.2.Materials: -64II.2.1. Synthetic solution65II.2.2. Treated sewage water65II.3. Treatment tcchnique66	CHAPTER II	53
II. 1.1. Water Samples:II. 1.2. Soil Samples:II.1.2. Soil Samples:II.1.2.1. DTPA soil test:II.1.2.2. 0.5 M nitric acid extractionII.1.3. Plant sampling and analysis63II.2.Materials: -II.2.1. Synthetic solutionII.2.2. Treated sewage waterII.3. Treatment tcchnique66	II.1. Materials and Methods	
II.1.2. bon bamples.II.1.2.1. DTPA soil test:II.1.2.2. 0.5 M nitric acid extractionII.1.3. Plant sampling and analysis63II.2.Materials: -II.2.1. Synthetic solutionII.2.2. Treated sewage waterII.3. Treatment technique66	II. 1.1. Water Samples:	59
II.1.2.2. 0.5 M nitric acid extraction62II.1.3. Plant sampling and analysis63II.2.Materials: -64II.2.1. Synthetic solution65II.2.2. Treated sewage water65II.3. Treatment technique66	•	60
II.1.2.2. 0.5 M nitric acid extractionII.1.3. Plant sampling and analysis63II.2.Materials: -II.2.1. Synthetic solutionII.2.2. Treated sewage waterII.3. Treatment technique66		62
II.1.9.1 Halle sampling and analysis64II.2.1. Synthetic solution65II.2.2. Treated sewage water65II.3. Treatment technique66		
II.2.1. Synthetic solutionII.2.2. Treated sewage waterII.3. Treatment technique66		
II.2.2. Treated sewage water65II.3. Treatment technique66		04
II.3. Treatment technique 66	•	65
11.5. Houmon comique	-	_
	II.4. The studied metals	67

-

CHAPTER III REULTS & DISCUSSION

III. 1. WATER	68
III.1.1 The physical and chemical characteristics of sewage	68
water that were used for irrigation at El-Gabal El-Asfar.	
III.1.2. The physical and chemical characteristics of sewage water that were used for irrigation at Abu-Rawash	77
III. 1.3. The physical and chemical characteristics of sewage water of Alexandria City	84
Comparison between level of heavy metals in sewage water at both of El-Gabal El-Asfar; Abu-Rawash and Alexandria during the winter and summer seasons	85
III.1.4. The physical and chemical characteristics of canal water used for irrigation at Abu-Rawash	92
III.1.5. The physical and chemical characteristics of groundwater used for irrigation at Abu-Rawash	98
III. 2. Soil	
III.2.1. Effect of sewage reuse on some physical and chemical characteristics of soil at El-Gabal El-Asfar farm:	104
III.2.2.Effect of sewage reuse on some physical and chemical characteristics of soil at Abu-Rawash farm	108

III.2.3. Level of heavy metals in the agriculture soil as	
extracted by DTPA and 0.5 M HNO ₃ at both of El-Gabal	112
El-Asfar and Abu-Rawash regions	

III.3. PLANTS

III.3.1. Effect of irrigation with sewage water on the macro-,micro-elements and heavy metals content in different species of citrus trees at El-Gabal El-Asfar farm:

III.3.1.1. Naring Citrus Tree:	
III.3.1.2. Orange Citrus Tree:	135
III.3.1.3. Lemon Citrus Tree:	143
III.3.2. Effect of irrigation with sewage water on the micro-,	
macro-elements and heavy metals content in different	
species of citrus tree fruits at Abu-Rawash region:	
III.3.2.1. Iron in the citrus plant irrigated with sewage water:	151
[II.3.2.2. Manganese and other heavy metals.	152
III.3.3. Effect of irrigation with sewage water on the macro-,	
microelements and heavy metals content in Cabbage	172
plants at El-Gabal El-Asfar farm:	
III.3.4. Effect of irrigation with sewage water on the macro-,	
microelements and heavy metals content in Cabbage	
plants at Abu-Rawash farm	176
III.3.5. Effect of irrigation with sewage water on heavy metal	
content in Eucalyptus camaldulensis and Casuarina	180
glauca trees at El-Gabal El-Asfar region	

(during the period from November 1999 to March 2001)

III.3. 6. Effect of irrigation with sewage water on heavy	
metals content in Eucalyptus camaldulensis and	
Casuarina glauca trees at Abu-Rawash region	183
(during the period from November 1999 to March 2001)	
III.4. Results of sorption experiments	187
III.4.1. Determination V/m ratio	
III.4.2. Sorption behaviour of heavy metals	
III.4.2.1. Effect of contact time on uptake percent of lead: -	188
III.4.2.2. Effect of concentration on uptake percent of lead III.4.2.3. Effect of pH on uptake and capacity percent of	
lead: -	189
III.4.2.4. Effect of contact time on uptake percent of	
cadmium:	
III.4.2.5. Effect of concentration on uptake percent of cadmium	193
III.4.2.6. Effect of pH on uptake and capacity percent of	195
cadmium	
III.4.2.7. Effect of contact time on uptake percent of zinc	
III.4.2.8. Effect of concentration on uptake percent of zinc	197
III.4.2.9. Effect of pH on uptake and capacity percent of zinc	• • •
III.4.2.10. Effect of contact time on uptake percent of	
nickel: -	
III.4.2.11. Effect of concentration on uptake percent of	201
nickel	
III.4.2.12. Effect of pH on uptake and capacity of nickel	
III.4.2.13. Effect of contact time on uptake percent of	
cobalt III.4.2.14. Effect of concentration on uptake percent of cobalt	
III.4.2.15. Effect of pH on uptake and capacity percent of cobalt	205
III.4.2.16.Effect of contact time on uptake percent of	
chromium	
III.4.2.17. Effect of concentration on uptake percent of	209
chromium	

III.4.2.18. Effect of pH on uptake and capacity percent of chromium	210
III.4.3. Sorption behaviour of chloride, nitrate and sulphate	
ions on different materials	
III.4.3.1. Effect of contact time on uptake percent of	213
chloride	213
III.4.3.2. Effect of concentration on uptake percent of	
chloride	
III.4.3.3. Effect of pH on uptake and capacity percent of	214
chloride	214
III.4.3.4. Effect of contact time on uptake percent of nitrate	217
III.4.3. 5. Effect of concentration on uptake percent of	217
nitrate	
III.4.3.6. Effect of pH on uptake and capacity percent of	218
nitrate	
III.4.3.7. Effect of contact time on uptake percent of	
sulphate	221
III.4.3.8. Effect of concentration on uptake percent of	
sulphate	
III.4.3.9. Effect of pH on uptake and capacity percent of	
sulphate	
III.4.4. Application of different materials on the treated	
sewage water by using batch technique	225
sewage water by using baten teeninque	
III.4.4.1. Treatment of Lead	
III.4.4.2. Treatment of Cadmium	
III.4.4.3. Treatment of zinc	
III.4.4.4. Treatment of nickel	
III.4.4.5. Treatment of cobalt	226
III.4.4.6. Treatment of chromium	
III.4.4.7. Treatment of chloride	227
III.4.4.8. Treatment of nitrate	
III.4.4.7. Treatment of sulphate	228
Summary and Conclusion	232
References	239
Appendix	
Arabic Summary	

~

~

-