Name of Candidate Mostafa Abd El-Monem El-Garhy	Degree	Ph.D.
Title of Thesis USING SOME NON-CONVENTIONAL FEED	STUFFS	
IN FISH FEEDING		
Supervisors Prof. Dr. Abd El-Rahman Mahmoud Abd El-Gawad		
Prof. Dr. Ahmed Abd El-Basit Mohamed		
Department Animal Production Department		
Branch Animal nutrition Approval 9	/10/2003	

ABSTRACT

This study was designed to determine the effect of partially replaced fish meal protein at levels 0, 25, and 50% by using non-conventional protein sources (poultry by-product meal) in the first experiment. In the second experiment, potato by-product and macaroni by-product were used at levels of 0, 25 and 50% to replace yellow corn in Nile tilapia diets. In each feeding trial a total number of 1200 Nile tilapia fish (30 gm body weight), randomly distributed in four groups per treatment (3 riplicates in each), there were fed diets at 3% of total biomass of body weight (4 times) 6 days per week. The diets contained 30% CP and 4300 kcal/kg. The feeding trials were extanded for 140 days.

The results indicated that using 50% of poultry by-product meal to replace fish meal protein in the first experiment and 50% of potato by-product to replace yellow corn energy in the second experiment had the best for body weight gain. feed conversion ratio, utilization of nutritients and digestibility of nutrients. The lowest cost of one kg body weight of fish was also obtained. The experimental diets were not affected on fish flesh palatability or total counts of bacteria.

Key words: Nile tilapia, poultry by-product, potato by-prodocut, digestability coefficients.

Page 1.INTRODUCTION..... 1 2. REVIEW OF LITERATURE..... 2 2 2.1. Plant protein sources..... 5 2.2. Animal protein sources 2.2.1. Poultry by-product waste meal (PBPM)..... 6 2.2.2. Hatchery by-product waste meal (HBPM)..... 7 9 2.2.3. Hatchery by-product waste in fish feeding..... 12 2.3. Energy sources..... 2.3.1.Potato by-product waste (PB)..... 12 2.3.2. Macaroni by-product waste (MB) 15 2.4.Digestibility trial 18 19 2.4.1.The direct method 2.4.2. The indirect method..... 19 2.5.Carcass quality of fish flesh . 20 2.5.1.Chemical composition of fish flesh 20 22 2.5.2. Total volatile bases nitrogen of fish flesh 2.5.3. Physical characteristics of fish flesh..... 22 2.5.3.1. Water holding capacity (WHC)..... 22 2.5.3.2. Hunter color evaluation..... 23 2.5.3.3. Microbiological load of fish flesh..... 23 3. MATERIALS AND METHODS..... 27 3.1. The experimental diets 27 3.1.1. Poultry by-product waste meal (PBPW)..... 27 3.1.2. Hatchery by-product waste meal (HBPW)..... 28 3.2. Diet manufacture 28 3.3.Experimental fish and cages..... 29 3.4. Feeding trial..... 30 3.5.Records maintained..... 31 3.5.1.Growth parameters..... 31 a. Body weight 31 b. Condition factor (k)..... 31 c. Total body weight gain 31 d. Average daily gain..... 31 e. Specific growth rate..... 32 f. Relative body weight gain (RBWG)..... 32 3.5.2. Feed conversion ratio (FCR)..... 33 3.5.3.Protein efficiency ratio (PER)..... 33 3.5.4.Protein productive value (PPV)..... 34 3.5.5.Energy efficiency ratio (EER) 34 3.5.6. Fat productive value (FRV) 34

3.6. The energy value

35

CONTENTS

3.7. Water quality analysis	35
3.8. Chemical analysis of the diets and Fish carcass	36
3.9. Economical study	36
3.10. Statistical analysis	36
3.11. Digestibility traits	37
3.12 Fish quality determination	38
3.12.1 Chemical analysis of Fish Flesh	38
3.12.101. Trimethylamine nitrogen (TMA)	38
3.12.102. Thioborbituric acid test (TBA)	38
3.12.103. Determination of total volatile bases nitrogen	38
3.12.2. Microbiological methods	39
3.12.201. Total microbial count	39
3.12.202. Mold and yeast counts	39
3.12.104. Determination of pH value	39
3.12.3. Physical methods	39
3.12.301. Water holding capacity (WHC)	39
3.12.302.Cooking and Frving losses	40
3.12.303. Sensory evaluation	40
4. RESULTS AND DISCUSSION	41
4.1. Experiment 1	41
4.1.1. Water quality parameters	41
4.1.2. Mortality	43
4.1.3. Diets and ingredients	43
4.1.3.1. Chemical analysis of the experimental diets	43
4.1.3.2. Chemical analysis of the ingredients	43
4.2. Body weight and growth performance	46
4.2.1. Average body weight	46
4.2.2. Body weight gain (BWG)	49
4.2.3. Average daily gain (ADG gm/fish)	52
4.2.4. Specific growth rate (SGR)	52
4.2.5. Relative body weight gain (RBWG)	56
4.2.6.Condition factor (K)	58
4.3. Feed utilization parameters	58
4.3.1. Feed intake (FI) and nutrients intake	58
4.3.2. Feed conversion ratio (FCR)	60
4.3.3. Efficiency of protein, fat and energy utilization	66
4.3.4. Protein, fat and energy retention in whole fish bodies	66
4.4. Body composition and energy content of whole fish	71
4.5. Economic efficiency of the experiment (1)	71
4.6. Apparent digestibility coefficient	75
4.7. Experiment 2	77
4.7.1.Feeding trail.	
4.7.1.1. Chemical composition of the ingredients	77

4.7.1.2. Chemical composition of the experimental diets and gross energy	79
4.8. Growth performance	79
4.8.1. Body weight (BW)	79
4.8.2. Body weight gain (BWG)	81
4.8.3. Average daily gain (ADG)	85
4.8.4. Specific growth rate (SGR)	85
4.8.5. Relative body weight gain (RBWG)	90
4.8.6. Condition factor (K)	92
4.9. Feed utilization	94
4.9.1. Feed and nutrients intake	94
4.9.2. Efficiency of feed intake and energy utilization	94
4.9.2.1. Feed conversion ratio (FCR)	94
4.9.2.2. Protein, fat and energy efficiency ratio (PPV, FPV and EU)	99
4.10. Protein, fat and energy retention	102
4.11. Body composition and energy content of whole fish	104
4.12. Economic efficiency of the experiment 2	107
4.13. Apparent digestibility coefficient (ADC %) of nutrients and energy (Exp2)	108
4.14.Chemical composition and quality attributes of fish flesh (Exp1)	111
4.14.1. Chemical composition and pH value of fish flesh	111
4.14.2. Change in total volatile bases nitrogen (Exp1)	114
4.14.4. Changes in the thiobrbituric acid value (TBA) (EXP)	117
4.14.3. Changes in trimethyl amine nitrogen value (TMA)	117
4.15. Physical properties of fish flesh	120
4.15.1.Changes in water holding capacity (WHC) (Exp1)	120
4.16. Microbial properties of different fish flesh of nile tilapia	120
4.16.1.Total bacterial count	120
4.17. Sensory evaluation of fish flesh (Exp.1)	123
4.18. Chemical composition and quality of fish flesh (Exp.2)	126
4.18.1.Chemical composition, quality attributes of fish flesh (Exp.2)	126
4.18.2. Changes in total volatile bases nitrogen (TVBN)	129
4.18.4. Changes in thiobarbituric acid values (TBA)	132
4.18.3.Changes in trimethyl amine (TMA) values	132
4.19. Physical properties of different treatments of fish flesh of Nile tilapia	135
4.19.1.Changes in water holding capacity (WHC) (Exp2)	135
4.20. Microbial properties of fish flesh (Exp.2)	135
4.20.1. Total bacterial count	
4.24.Sensory evaluation of fish flesh (Exp2)	138
5. SUMMARY AND CONCLUSION	141
6. REFERENCES	146
ARABIC SUMMARY	

•

LIST OF ABBREVIATION

ADC	Apparent digestibility coefficient
ADG	Average daily gain
B.L.	Body length
B.W	Body weight
BWG	Body weight gain
°C	Temperature centigrade
CF	Crude fiber
СМ	Centimeter
DM	Dry meter
DO	Dissolved oxygen
EE	Ether extract
EER	Energy efficiency ratio
EPV	Energy productive value
EXP.	Experiment
FCR	Feed conversion ratio
FER	Feed efficiency ratio
FIG.	Figure
FPV	Fat productive value
GE	Gross energy
Gm	Gram
HBPW	Hatchery by – product waste
Hr	Hour
K	Condition factor
K Cal	Kilocaloriy
Кд	Kilo gram
L	Liter
Le	Length
MB	Macaroni by-product
Mg	Milligram
NFE	Nitrogen free extract
PB	Potato by-product
PBPW	Poultry by-product waste
PER	Protein efficiency ratio
PPV	Protein productive value
RBWG	Relative body weight gain
SGR	Specific growth rate
ТВА	Triobarbituric acid
ТМА	Trimethylamine
TVBN	Total volatile bases nitrogen
WHC	Water holding capacity
WT	Body weight